Durability Evaluation of Strengthening Mortars Applied to Historical Masonry Structures

Prof. Pietro BOCCA and Dr. Alessandro GRAZZINI

Department of Structural and Geotechnical Engineering

Politecnico di Torino, Italy

INTRODUCTION

The restoration of historical masonry buildings is a complex process, in that the choice of the most compatible strengthening materials plays a basic role for the durability of reinforced structures.

Their long-term behaviour remains unknown in several aspects, especially when they are applied to deteriorated historical masonry structures, whose mechanical behaviour is often difficult to analyse.

INTRODUCTION

The recent earthquakes have shown the clear failure of the restoration works performed with the use of concrete materials. The original constructive characters of historical masonry buildings have been upset.

SUSTAINABLE AND DURABLE RESTORATION WORKS

✓ compatibility and durability

✓ integration and not alteration of the structure

✓ respect of conception and original techniques

✓ not much invasive

✓ reversible

The masonry buildings well upkept by means of effective techniques and materials characteristic of the same nature of historical factory have shown a great resistance to the seismic actions.

Today the restoration knowledge has finally understood the good effectiveness shown by the lighter and less invasive technologies.

The Non-Destructive Testing Laboratory - Politecnico di Torino

UNEXPECTED CHANGE IN THE TIME OF MECHANICAL BEHAVIOUR AND COMPATIBILITY The pur used in laboratory tests as a preliminary design stage for structural interventions, in order to pre-qualify the strengthening mortars and be able to formulate **PROBLEMS OF DURABILITY** y and long-term behaviour when applied to historical masonry walls

THE RESTORATION BUILDING SITE

🗱 |La Venaria Reale

The most significant restoration project in Europe

EXPERIMENTAL LABORATORY and IN SITU TESTS

Injection technique?

Jacketing technique?

The modern lime mortars have a composition similar to those historical and good mechanical characteristics. They can to strengthen the masonry structures through reinforcement of vaults or jacketing walls that don't result too much stiff compared to the same manufactured by concrete mortars.

🗱 |La Venaria Reale

LABORATORY TESTS

1st stage: SINGLE MATERIALS and MIXED TEST PIECE

- Historical bricks from the Royal Palace of Venaria (LT);
- 4 types of strengthening mortars:
- AM reinforcement by structural plaster
- BM consolidation by grout injection
- CM reinforcement by structural plaster
- DM jacketing of walls or reinforcement of vault

2nd stage: BRICKWORKS

3rd stage: MASONRY SPECIMENS

800x800x400mm

STATIC TESTS 250x250x120mm **FREEZING-THAWING TESTS CYCLIC LOADING TESTS**

40x40x160mm

223x57x83mm

he choise of the most compatible mortar

EXPERIMENTAL LABORATORY TESTS

1st stage: SINGLE MATERIALS and MIXED TEST PIECES

Static, cyclic loading and freezing-thawing tests are carried out on the single materials and on the first scale dimension mixed test pieces in order to study in small scale the interaction fatigue problems between strengthening mortar and historical bricks.

EXPERIMENTAL LABORATORY TESTS 2nd stage: BRICKWORKS

From the experimental results of the first stage, a typology of mortar is chosen to continue the experimental study through the brickworks. Static, cyclic loading and freezing-thawing tests are carried out by diagonal compressive test.

BRICKWORKS 250x250x120mm

EXPERIMENTAL LABORATORY TESTS <u>3rd stage: MASONRY SPECIMENS</u>

The effectiveness of the same chosen strengthening mortar is analysed by means of static compressive test on the masonry specimens, in order to simulate in large scale the real behaviour of the jacketing technique.

1st stage: SINGLE MATERIALS

Material	E _{average} (N/mm ²)	Vaverage	σ _{average} (N/mm²)	∆% ठ (6 months)
Mortar A	6208	0.12	8.27	-7.50
Mortar B	7534	0.19	10.91	+111.55
Mortar C	12678	0.23	10.34	+146.39
Mortar D	12274	0.32	24.95	+57.47
Historical Brick	4099	0.08	8.09	-

1st stage: SINGLE MATERIALS

1 st stage: MIXED IE51 PIECE5									
	Series	Test piece	P _{max} (KN)	σ_{max} (N/mm ²)	o _{average} (N/mm ²)	E (N/mm ²)			
AL	AL02	102.75	19.30	- 15.40	11988	4			
	AL04	59.76	11.49	15.40	14157	34 1			
BL	BL01	108.51	22.17	16.89	16940	- 1			
	BL02	52.30	11.60	10.09	4400	- 0			
CL	CL01	40.78	9.71	12.58	6597	11			
	CL02	76.98	15.46	12.00	12478	D			
DL	DL01	58.50	12.10	12.04	6191	11			
		DL02	60.45	11.98	12.04	8106	1/1		
							1 to a to		

Ast atomas MIVED TECT DIECEC

Test piece	Condition	P _{max} (KN)	σ_{max} (N/mm ²)	$\sigma_{average}$ (N/mm ²)	Δσ %	E (N/mm ²)
AL03	cracked	95.54	19.78			10050
AL06	detached	81.00	15.83	15.88	+3.15	8151
AL08	detached	59.30	12.03			6701
BL07	cracked	76.30	14.23	12.88	-17.81	6250
BL1 0	cracked	66.50	13.52	15.00		6582
CL06	whole	104.50	19.92	15.52	±18-25	10604
CL08	whole	54.62	11.13	13.32	+10.23	7191
DL08	whole	107.40	21.52	22.87	+80.02	35358
D L07	whole	129.30	24.22	22.07	+09.93	16249
	piece AL03 AL06 AL08 BL07 BL10 CL06 CL08 DL08	pieceConditionAL03crackedAL06detachedAL08detachedBL07crackedBL10crackedCL06wholeCL08whole	piece Condition (KN) AL03 cracked 95.54 AL06 detached 81.00 AL08 detached 59.30 BL07 cracked 76.30 BL10 cracked 66.50 CL06 whole 104.50 DL08 whole 107.40	pieceConditionImage (KN)(N/mm²)AL03cracked95.5419.78AL06detached81.0015.83AL08detached59.3012.03BL07cracked76.3014.23BL10cracked66.5013.52CL06whole104.5019.92CL08whole54.6211.13DL08whole107.4021.52	pieceCondition(KN)(N/mm²)(N/mm²)AL03cracked95.5419.78	pieceConditionImage (KN) (N/mm^2) (N/mm^2) $\Delta \sigma$ %AL03cracked95.5419.78 $=$ $=$ $=$ AL06detached81.0015.8315.88 $=$ $=$ AL08detached59.3012.03 $=$ $=$ $=$ BL07cracked76.3014.2313.88 $=$ $=$ BL10cracked66.5013.52 $=$ 15.52 $=$ $=$ CL06whole104.5019.9215.52 $=$ $=$ $=$ $=$ DL08whole107.4021.52 $=$ $=$ $=$ $=$ $=$ $=$ $=$

1st stage: MIXED TEST PIECES Cyclic tests 70% of the static load – 100000 cycles

Volumetric deformation

- initial 70% loading-unloading test;
- 70% cyclic test (100000 cycles);
- final 70% loading-unloading test;
- post-cyclic compression test to failure

1st stage: MIXED TEST PIECES

TALIERCIO, GOBBI (1996) – MINH-TAN et al. (1993) – MU, SHAH (2005)

By analogy with the method suggested for concrete (Taliercio and Gobbi 1996), the evolution of vertical deformations over time is analysed as the primary parameter for predicting and quantifying the fatigue strength of the material.

Through linear interpolation between the 20% and 80% deformation values (secondary creep), the $\partial \varepsilon_v / \partial n$ derivatives were worked out.

A valid correlation was established between secondary creep rate $(\partial \varepsilon_v / \partial n)$ during stage II and fatigue life (number of cycles to failure, N). By performing a number of cycles on a consistent number of masonry specimens, it is possible to predict fatigue life.

1st stage: MIXED TEST PIECES Cyclic tests

1st stage: MIXED TEST PIECES Cyclic tests

				4000					
				3000 -					
				2000 -			AL01		
				1000 -	~~~~		ALUI		
								1 1	
Test piec	e n	∂εv/∂n	LogN	Log(∂ε້ν/∂n) ^{0,10} N ^{0,20} 0, the	,30 0,40 0,50 0,60	0,70 0,80	0 0,90 1,00	1,10
_AL01	22380	0.0270	4.350	-1.56 9 ∞-	25583	AL05			
AL05	53465	0.0198	4.728	-1.70 3 °° -	32029				
BL03	100000	0.0047	5.000	-2.32300-	90605				
BL05	100000	0.0040	5.000	-2.39 ^{₺₀₀₀⊥}	102716	n/Nf			
BL06	100000	0.0024	5.000	-2.612	147056				
CL05	461	5.1818	2.664	0.714	555				
CL09	1223	2.5110	3.087	0.400	941				
CL10	15835	0.0501	4.200	-1.300	16294				
DL03	1149	0.4704	3.060	-0.328	3187				
DL05	100000	0.0015	5.000	-2.813	206028				
DL06	100000	0.0070	5.000	-2.155	68328				
BL04	40993	0.0340	4.613	-1.469	21612				
BL09	360	9.4729	2.556	0.976	358				
CL04	100000	0.0035	5.000	-2.454	112832				
CL07	46622	0.0192	4.669	-1.717	32795				
DL09	100000	0.0025	5.000	-2.594	142671				
DL10	100000	0.0113	5.000	-1.947	48171				

2nd stage:BRICKWORKS

3rd stage: MASONRY SPECIMENS

CONCLUSIONS

The experimental procedure has allowed to select the most compatible and durable restoration product and technique for the strengthening works. From a range of alternatives, tested in laboratory through fatigue tests, a mortar, suitable for the jacketing technique, have shown to possess constant mechanical performances in the time under different mechanics and termo-higrometric stress.

The evolution in the time of the mechanical characteristics, due to maturation, thermo-hygrometric and fatigue loading condition has been investigated through static, cyclic loading and freezing-thawing tests on different reinforced masonry specimens.

The methodology is useful to identify a number of key parameters for interpreting the fatigue behaviour of historical brick-strengthening mortar system, in order to avoid the errors associated with materials that are not mechanically compatible and to guarantee the durability of strengthening works.

Durability Evaluation of Strengthening Mortars Applied to Historical Masonry Structures

Pietro BOCCA and Alessandro GRAZZINI

Department of Structural and Geotechnical Engineering

Politecnico di Torino, Italy

